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Abstract-With the object of developing refined dynamic theories for plates, shells, beams and composites,
a new technique is proposed. This technique eliminates any inconsistency between the assumed defor­
mation or temperature shape and lateral boundary or interface conditions. Accordingly, it improves the
dispersive characteristics of waves propagating in any of these structural elements. In this study the new
technique is applied to thermoelastic plates. It is found that the dispersion curves predicted by the refined
approximate theory duplicate very closely those derived from the exact theory without introducing any
matching coefficients into the approximate theory.

INTRODUCTION
It is well known that when an approximate mathematical model governing the dynamic
behavior of a continuous body with a particular geometry is developed its validity is judged
usually by comparing the spectrum predicted by the model with that predicted by the exact
theory or experiments. This criterion is widely used by many researchers to assist them in
establishing approximate theories for plates, shells, beams or composites (see e.g. [I-II]). The
procedure they use is based on a series expansion of the displacements with respect to the
distance in a certain direction dictated by the geometry of the body (e.g. in the thickness
direction for plates and shells, and in the lateral direction for beams). Retaining certain number
of terms in the series and using a variational functional they obtain the equations of the
approximate theory. To compensate the error which, they claim, is caused by truncation of
series, some of the researchers introduce parameters, called matching coefficients, into the
theory. They determine the values of these coefficients by adjusting certain properties of the
approximate spectra to match the exact.

The work described here is initiated from the suspicion that the main source of the error in
the theories mentioned above may be associated with the incompatibility between the assumed
deformation shapes in these theories and the lateral boundary or interface conditions. This
suspicion is based on the fact that the correct prediction of geometric dispersion by a theory
depends on whether the reflection and refraction properties of the boundary and interfaces are
taken into account correctly or not. In this study we present a new technique which eliminates
the inconsistencies between the assumed deformation or temperature shape, and the lateral
boundary or interface conditions. This technique is general in the sense that (i) it can be used to
develop approximate dynamic theories for plates, shells, beams and composites; (ii) the thermal
effects may be included with no difficulty; (iii) the material may be elastic or viscoelastic,
isotropic or anisotropic; (iv) as many dispersion curves as desired may be included in the
analysis.

In the present work, which is the first part of our study, we apply the new technique to
thermoelastic, isotropic plates. In the second part the same technique is applied to ther­
moelastic, laminated composites. The application of the technique to beams and other com­
posites (such as masonry wall like composites) is under study and will be reported shortly.

To develop an mth order theory for plates first we choose set of distribution functions
{cPo(i2), cPl(i2),··., cP",(i2), cP",+I(i2), cPlII+2(i2)}, where i 2=X2/h; X2 is the distance measured
perpendicular to the midplane of the plate; h is the half thickness of the plate. Retaining the
two additional functions cP",+1 and cP"'+2 in the set makes it possible to establish the constitutive
relations for the face variables (the face variables are the displacements, stresses, etc. defined
on the faces of the plate). These constitutive relations playa critical role in satisfying the lateral

ttS5



1156 Y. ME~GI

boundary conditions correctly. Using c/>n (n =0- m) as weighting functions we then integrate
the equations of thermoelasticity over the thickness of the plate. This gives some approximate
equations expressed in terms of generalized variables (i.e. generalized displacements, stresses,
etc.) and in terms of face variables. To complete the theory some additional constitutive
relations are needed for the face variables and for some generalized variables whose con­
stitutive relations are not given by the approximate equations already established. The ad­
ditional relations are obtained by expanding the displacements and temperature in terms of c/>.
(n = 0 - (m +2» and by taking into account the relations between these expansions. and
generalized and face variables.

In order to demonstrate the power of the technique, the flexural and longitudinal waves are
studied by using first and second order theories respectively. As seen from Figs. I and::! the
match between the exact and approximate dispersion curves is excellent. It must be emphasized
that this perfect match is obtained in spite of using lower order theories and not introducing any
matching coefficients. Eliminating the need for using matching coefficients in a theory is very
important because the determination of these coefficients depends on the availability of exact or
experimental data and involves lengthy computations.
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INTEGRATION OF THE FIELD EQUATIONS

We assume that the plate is made of an isotropic, thermoelastic material and has a uniform
thichness "2h". We refer the plate to a Cartesian coordinate system (x" X2' X3) in which the XIX3

plane coincides with the midplane of the plate. We first write the fundamental equations of
linear thermoelasticity. They are

equations of motion:

(I)

constitutive equations:

(2)

energy equation:

(3)

modified Founes's law:

(4)

where

p mass density
A, p.. Lame's constants

Cv specific heat per unit volume at constant deformation
To absolute temperature of the reference configuration
k coefficient of heat conduction
T retardation time for the heat flux

Uj displacement
Tjj stress components

Vj( = Uj) components of particle velocity
qj components of heat flux
e temperature deviation from the reference temperature
Ij components of body force
g heat generation.

{3 is defined by {3 = (3A +2p..)a, where a is the coefficient of thermal expansion; 8ii is the usual
Kronecker delta; the dot denotes the partial differentiation with respect to time t; and OJ stands
for (a/axj).ln writing eqns (1)-(4) the indicial notation is used. In this notation the repeated index
implies summation over the range of that index. We note that the modified Fourier law, eqn (4),
is obtained by adding the term "rei" to the left hand side of the classical Fourier equation. This
modification permits a finite wave speed for the thermal wave front[l2].

To develop the approximate dynamic theory for plates. we start the analysis by choosing a
set of distribution functions {4>.. (i21; n =O. 1.2...}. where i 2= X2/h. We assume that the 4>..
form a complete set in the sense that a given function f(i21 on the interval -1 s i 2 S 1 can be

.. N
represented by the series I a..4>,.(i21. i.e. Lim I a/l4>.. (i21 =f(i21. where a/l's are some

/1-0 N_It-O

constants. For developing an mth order theory we retain the elements
{</lo. 4>...... 4>"" ~"'+It ~",+J of the set. Further, we assume that t/J.. (n = 0- (m +2» are those
elements of the set which permit us to include all the displacement or temperature distributions
having the nodal points of the number from zero to (m +2) along the thickness of the plate. As
will be seen later, keeping the last two elements .",+1 and t/J"'+2 in the set allows us to satisfy the
lateral boundary conditions correctly. Without loss of generality we also assume that ~/I

(n = 0- (m +2» is an even function of i 2 for n even and odd function of i 2 for n odd. At this
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stage of the analysis we do not make any assumption regarding the orthogonality of the
functions ¢",

We now multiply the equations of motion by ¢" (n::::: 0- m), integrate them over the
thickness and divide the resulting equations by "2h" (i.e, we apply the operator
(I/2h )f~h ( )¢" dX2 to eqn (1)), This gives

where

R." :::; ¢"(l) t..."
, 2h x,

(5)

(6)

To establish the constitutive relations for Tr;, T~; and 1'2;, we use eqn (2). We apply the operator
O/2h) I~h( )¢" dX2 to the constitutive equations for T;; and T31' and the operator (l/2h) rh( )
(d¢"/dx2) dX2 to the constitutive equations for T2i' We thus obtain

where

TI':::: (2f.L +A)Jlut +AJ3u)" + '\(St - U2")-/3(J"

T~3:::: Aolul" + (2f.L + A)03u)" + '\(S2" - a2")- /36"

Tr2:::: f.L(J1u/ +S," - al")

T32 == f.L(03U2" +S3" - ih")

TI3 ::::: T~l == f.L(J)UI" +0JU3") (n "" 0 - m)

1'22 == AOIUI" + Ad3a3" + (2f.L +A)(52" - U2") -/38"

1'21 == f.L(dlfit +51" - Ill")

1'23"" f.L(iJ3fi2" +53" - Il)") (n == 0- m),

C'," ::::: ¢/l(lh',11.,}, 2h ~,

5," =p~(J) ~,"
'" 2h.,}'

(7)

(8)

(9)
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S.ft =[S;- =ut - u;- for even n
I st =ut +Uj- for odd n

§.ft = [st for even n
I S;- for odd n
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In the fifth of eqns (9) the prime denotes the derivative with respect to the nondimensional
distance i 2• i.e. 4>~ =(d4>,Jdi2),

We now apply the operator (l/2h) f~h ( )4>ft dX2 (n =0 - m) to the energy equation, eqn (3),
to get

- (d.q.ft +d3q3ft - ihft +Qft) +gft

= cv8ft +PTO(d.Vl ft +d3V3ft - V2 ft +S2ft )(n =0- m).

where Vjft = lit. Vjft = aj
ft and

Qft =4>ikl)Qft

"ft = [Q- = q2+- q2- for even n
I.l Q+ =q2+ +q2- for odd n

qt = q2lx2E:;:h'

(10)

(II)

The integrated form of the Fourier equations for qt. q2ft and q2ft can be found by using eqn
(4). To this end we apply the operator (l/2h)f~h ( )4>ft dX2 to the Fourier equations for ql and q3.
and the operator (l/2h) f~h ( )(dcMdx2) dX2 to the Fourier equation for q2' We obtain

where

141 ft +qlft = _ kdlOft

143
ft +q3ft =-kd30ft (n =O-m)

'to = ["'+ = 0++ 0- for even n
'" ,r =0+ - 0- for odd n

(12)

(13)

(14)

0:;: =0IX2-+ h '

The integration of the field equations is now complete. Equations (5). (7). (8). (10). (12) and
(13) constitute 16(m + I) equations. Stress or displacement, and temperature or heat flux
boundary conditions on the lateral surfaces of the plate give another eight equations which can
be expressed in terms of the face variables st, Rt. "':;:, Q+, In fact. on the faces of the plate, as
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exact boundary conditions. we specify quantities composed of one member of each of the pairs

(ri" Un; (r2"Un U=/-3)
(Q2+.8+); (Q2-. 8-).

In the approximate theory these eight boundary conditions can be expressed in terms of face
variables using eqns (6)4. (9)6' (11)4 and (14h. They take the following form. Quantities
composed of one member of each of the pairs

(Rt +Rj- st +Sj-). (R/ - Rj- S/ - Sj-)
2 ' 2 ' 2' 2 (i =/- 3)

are specified on the lateral surfaces, Thus the number of available equations is [16(m + 1) +8].
On the other hand, the number of unknowns (r~j, rjj, T~;, ul', ill', 0;", Q1n, Q3n, lit, 8n, in, in, R; ,
Sj'+, Q+, I/J+) is [24(m +I) +16], Therefore, to complete our mathematical model we need
[8(m + I) +8] more equations,

ADDITIONAL EQUATIONS

The [8(m +I) +8] additional equations can be obtained by establishing the constitutive
relations for the face variables st, I/J+ and for the generalized variables ill', fil', jjn, 6n. To this
end we expand the displacements Uj and the temperature 8 in terms of cPn (n = 0- (m +2)):

(15)

(16)

where the coefficients a.i and b. are the functions of XI> X) and t. Using eqns (2) and (15), for 72j

we get
m+2

72j =~ &0 a.jcPi: +JLajU2 for i =/,3

(2f.L + A) m+2
722= h &0 a.2¢k+ A(a I U l+ a3u)-#8.

When we insert eqn (16) into the Fourier law eqn (4) with i::: 2 we obtain

(17)

(18)

Substitution of eqns (15) and (16) into the expressions defining st (eqn 96), iil' (eqn 92), Ii;" (eqn
9). 1/1+ (eqn 143), jjn (eqn 92) and in (eqn 141) give

1'+2

st =2 .=~, a/eMI)

1"+2

Sj- = 2.=B, aki¢k(l)

for even n
(19)

for odd n
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and

for even n

for odd n

p = m -1; p' = m for odd m

where

and

p=m;

,,+2

r/J+ = 2.~2 b.<I>.(1)

,,'+2

r/J- = 2 ~ b.<I>.(l)
.~I, 3, ..

for even n

for odd n,

p' = m - I for even m

(20)

(21)

(22)

To complete the development of the additional equations it remains to determine the
coefficients a.i and b. appearing in eqns (19) and (20), For this purpose we apply the operator
(l/2h) J~f( )<1>" dX2 (n = 0- m) to eqns (15) and (16); and we write eqns (17) and (18) at X2 =:+ h,
and we add and subtract them. This gives set of algebraic equations governing the a.i and b•.
They are

equations governing a.i with even k:

(n=0,2, ... ,p)

(23)

equations governing a.i with odd k:
,,'+2

••~, .. coa.
1 =u;" (n =1,3, ... , p')

(24)
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equations governing bA with even k:
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p+~

2: (nAb. = (I" (n =0,2" .. ,p)
k;O,2.

(25)

equations governing b. with odd k:
p'+2

2: cnAbA =(jn (n =1,3, ... ,p')
k; I. 3,.

(26)

where

(27)

(28)

(29)

It should be noted that in the derivation of eqns (23}-(26) the expressions defining Rt, 5,·, Qj.
and ,,/ are used.

When we substitute the ak; and bk determined from eqns (23)-(26) into eqns (19) and (20) we
obtain the equations of the form

(30)

and

I/J+ = 2C=~, .1k84 +1+B+)

I/J- = 2C=~. 1k84 +1-B-)
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(31)

In eqns (30) and (31) 'Yb c;", c:•• 1"', c~" and cn"., are some constants whose explicit values can
be determined using eqns (19)-(29) whenever the functions t/Jn are specified.

The [8(m +1) +8] equations in eqns (30) and (31) and the equations derived in the previous
section constitute the governing equations of our approximate theory. We note that eqns (30)(,
(30h. (31)1 and (31)2 represent the constitutive relations for the face variables. The derivation of
these equations is based on the expansions. eqns (15) and (16) and the field equations of
thermoelasticity. The use of these equations together with the lateral boundary conditions
permits us to satisfy the lateral boundary conditions correctly and eliminates any inconsistency
between the assumed displacement or temperature shape and the lateral boundary conditions.

THE CASE OF ORTHOGANAL 4>;5
The constitutive relations. eqns (30) and (31). hold whether the t/Jn are orthogonal or not.

However. the computation of the constants appearing in these equations will be simpler if an
orthogonal set of functions is chosen. In what follows we will present the expressions defining
these constants when the t/J. form an orthogonal set.

In accordance with the orthogonality of the t/J•• we write first. using eqn (29):

(32)

where C. is a constant whose value will be known whenever the t/J. are chosen. In eqn (32). the
underlined repeated index implies that there is no summation over that index. When eqns
(23)-(26) are solved for alt.; and b. with the aid of eqn (32) we get

. u·D
an'=.....!... (n=O.I ..... m)

CD

and

; - I (~ ..1.'(1)"/ A+)0,+2- - A.' (I) _ '1'. c- ;
'I'p+2 It.. ,.. It.

; _ I (~. , ul _)0,'+2 - - A.', (I) t/J.(l)-- Ai'1',+2 It.- , ,.. c.

OD
b. =- (n =0.1•... , m)

CD

b'+2 =- A.' I(1)( <Eo t/JW) O· - B+)
'I'p+2 It.-f.i.. Cit.

I (. Ie
bp '+2=- A.', (1)' ~ t/JW)!.-B-).

'lip +2 .-f.L. :r.

(33)

(34)

Substitution of eqns (33) and (34) into eqns (19) and (20) and comparison of the resulting
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equations with eqns (30) and (31) give
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Y. =
..!.( d>d I) - y' cP\:(I))
Ck - .

..!.(d>k(l) - y-d>\:(I»)
Cl. - -

(k =O. 2..... p)

(k = 1, 3..... pi)

(35)

+ _ cPpdl). - _ cPp'+2(1)
'Y - A..p'+_.(I)' 'Y - A..' (1)''/' ' '/'p'+2

[

.l(Cnls. - c'n+ t/>(l» ~or even n ,
C

' - Ck (k - 1,3, ... ,p )
k - -

n .l(tn• _ c'.-t/>k(l)) for odd n
cis. - . (k =0, 2•... , p)

(36)

and

cJ+ = C.,P'+2

• t/>;'+z(l)
,- _ Cn,p+2

Cn - t/>;+2(l)

•__ C",p'+2
C. - I (1)cP p'+2

for even n

for odd n,

for even n
(k =0, 2, ... , p)

for odd n
(k = 1, 3, ... ,p')

for odd n.

(37)

THE VALUES OF CONSTANTS FOR LEGENDRE POLYNOMIALS

Using the formulas obtained in this section, tables for the values of the constants can be
prepared for various selected t/>n and for various orders of the approximate theory. As an
illustration we present here the values of constants when

where p. is the nth order Legendre polynomial, and for orders of the approximate theory
corresponding to m = 0, 1 and 2. Since Legendre polymonials are orthogonal, the constants are
computed by using the formulas in eqns (36) and (37), and are presented in Table I. The dash in
the table indicates that the corresponding constant does not exist in the approximate theory.

EXAMPLES

To show the power of the present approximate theory, we now compare dispersion curves
predicted by the approximate and exact theories. We make this comparison for flexural and
longitudinal waves and by using lower order approximate theories, namely, first order for the
flexural and second order for the longitudinal waves. We use lower order theories because we
know that the match between approximate and exact spectral lines will improve as the order of
the approximate theory increases. Our choosing the order of the approximate theory for
longitudinal waves as two, rather than one, is motivated by the strong coupling between the
second and third modes (which correspond to thickness shear and stretch modes) of these
waves. We now neglect the thermal effects and proceed to derive the frequency equations for
flexural and longitudinal waves. In our analysis we assume that the plate faces are free of
traction and, we choose the tPn to be Legendre polynomials.
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FLEXURAL WAVES

If the symmetry of "2 and antisymmetry of "I with respect to the midplane of the plate are
taken into account for the flexural waves in XI direction, the equations of the first order
approximate theory reduce to

equations of motion:

constitutive equations:

where

and

additional equations:

where

'T~::: p.(8IU20 +S,O - ",~

ft:: A8,il,0+(2p. +A)(5:0 - U2~

'TIl == (2p. +A)8,u,1 +).(S21
- il2

1
)

-I (8 - I +S- I • I)'T2' :: P. 1"2 I - UI ,

So- ~(1)S - -J..S ­
I - 2h I -2h I

5I-<I>,0)S+- 1 S+
2 -'ih 2 -2h 2

52°:: <l>o(PS2+ :: 0
2h

S- I - <l>iO)S - - 1 S­
I -1Jj2 I -W I ,

SI-:: 2(YIUII + y-An

S2+:: 2(YoU20+ y+At)

il2' :: CiO"20

"1°= u,':: U2o=O,

(38)

(39)

(40)

(41)

(42)

The coefficients in eqns (41) are given in Table 1 and in writina these equations the zero
coefficients are taken into account. Equations (42) are obtained by usingeqns (27) and traction free
lateral boundary conditions.

To obtain the frequency equation we let the trial solution for the unknown variables be of
the form: constant times eKa,-..,), where k is the wave number and f6 is the frequency, and
substitute it into the governina equations, eqns (38H42). Then the condition for having a

ss Vol. 16. No. 12-H
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Table 1. Value' of 'lln,tanh for zeroth, fir,t and ,econd order theone'

~l
+ - ,+

cil
.+

cio'1 0
~f 1 )2 Y cOl Co c 2 iprder I

0 1 - - 1/3 1 - 0 - - -
1 1 5/2 - 1/3 1/6 0 0 - - l/h

2 1 5/2 7/2 1/10 1/6 0 0 3/h 0 l/h

~I ci2 c' - c" c O2
.. +

c 20 c l2
.+

cil c· -prder 1 00 Co c 2 1

0 - - 0 - 0 - - - - -
1 - 0 0 - 0 - - - 0 0

2 0 0 0 0 0 3/h2 0 0 0 0

nontrivial solution gives the frequency equation which, after some manipulation, takes the form

pw2
- flk 2 ! ° I J!:..(ik) 0

! ! 2h •
..- ......----..-----...-----....·:......--------------....---.....-·1-..--------------~ ---...--..--..-----.. "

-C;O(,-I.+fl)(ik)!pw2 -(2fl+ A)k2
! -.f:r2 ! ZAhUk )

, "
---------2-~~----------r-----------O-----·------·I-=-h-i~(-ik)- \------=i-------
............._......._---- ..._-------:..-....._-.._--_......-----_..._--_.:-..._....---------.._.:------_........---_.° ! 2YI ! -1 ! - hy-Uk). "

A
where {= 2fl + A'

=0, (43)

LONGITUDINAL WAVES

For longitudinal waves in XI direction, UI and U~ have respectively symmetric and antisym­
metric distributions with respect to the midplane of the plate. In view of this property of
displacement components, the equations of the second order approximate theory reduce to

equations of motion:

constitutive equations:

'T~I = (2fl +A)alu;" +A(5/ - u/) (k = 0, 2)

i~t = fl(alU2k +5t
k - Ii;") (k = 0, 2)

rb = fl(a1U21 + SI] - UII)

i~2 =Aatu,l + (2fl + A)(52
1- "2'),

where

SO-<I>o(1)S-- I S­
2 -2il 2 -2h 2

S I - 1>1(1)S + - 1 S +
I -"2i! I -2h I

Sl =1>2(1)52 =...LS2-
2h 2h

(45)
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and

additional equations:

51"" =2( YOUIO + Y2UI2 + y"" AI"")

52- = 2(YI U2' + 'Y-A2-)

ii l
l =cioulo; iil = C21 U2

1
;

ii2°=U,O =U2' =0,

where

AI"" =-~aI52­

A2- =-~eaI51""'

1167

(46)

(47)

(48)

The frequency equation for longitudinal waves can be obtained by using eqns (44H48). It is

Iii
pw2-(2JL+A)k2 ! 0 ! 0 I 2

A
h(ik)! 0

------ --..---- - 1--------- -------.1..-----.- - ---- - ..i ---------1--------- -
. I I ! 2JL ~A I JL.

-cio(A +JL)(lk) I pw2_ JLk2 1 0 1- 2h i 2h(rk)

----------~;::--------F~~~~~-~:-)-(-;~;_r~:;·=(;;·~-~;~~-T-~-i~)···r-·~-~·-·
---------------------l·----------------·f--------···_- --------:--------.-~----.--

2'Y0 ! 0 ! 2Y2 l-h'Y""(ik)! -)..... _.__ ••_ 1. •·

o i 2'Y1 i 0 ! -) l-h'Y-e(ik)

=O. (49)

NUMERICAL RESULTS

For the value of Poisson's ratio 1/ = 0.25 the approximate dispersion curves for ftexural and
longitudinal waves are obtained using eqns (43) and (49) respectively, and are compared with
those derived from the exact theory in Figs. ) and 2. In these figures f and cd are nondimen·
sional wave number and frequency defined by f =(2h/11)k and cd = (2h/11C,)W, where c, =
V(JLlp) is the shear wave velocity. As seen from the figures the approximate and exact spectral
lines match very closely. We note that there is a small difference in the third cut-by frequency
of the longitudinal waves. However, we expect that this difference will disappear if the order of
the approximate theory is increased.

The excellent match in the figures is obtained without using matching coefficients. Avoiding
the use of matching coefficients in developing an approximate theory is very important because
the determination of matching coefficients depends on the availability of exact or experimental
data and involves lengthy computations.

Nott-After the present work was submitted for publicationan important studyon plates by R. D. Mindlin tilled "Vibrations
of Quartz Plates with HP-67 Pocket Calculator" appeared in Computers and StructllRS (Vol. 10, pp. 7S1-7S9, 1979). In this
study Mindlin studied the natural frequencies of a quartz plate of finite leqth by expandiDa the displacements in series of
exact characteristic functions of the infinite plate. The technique proposed by Mindlin is however completely different than
that used in the present study.
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